Categories
Article of the Month jIAPS

Protected: March jIAPS Article of the Month: Flying at Mach 10 – Decoding the Physics behind Top Gun: Maverick

This content is password protected. To view it please enter your password below:

Categories
News

Celebrating the International Day of Women and Girls in Science

As we mark the International Day of Women and Girls in Science, the International Association of Physics Students is proud to reflect on the advances we have made towards gender equality and empowerment within the scientific community. This day is not just a celebration but a call to action to break down the barriers that have held women and girls back in science, technology, engineering, and mathematics fields.

Our association, with over 90.000 members from across the globe, has always championed the cause of women in physics. Our initiatives aim to provide a supportive environment that encourages the participation of women in all aspects of physics, from academic research and teaching to industry and leadership roles. We believe that empowering women and girls in science is essential for achieving scientific excellence and addressing the complex challenges of our time.

In our continuous effort to support and promote gender equality in physics, IAPS has also established the Equity, Diversity, and Inclusion (EDI) Working Group, which focuses on Women in Physics, amongst other topics. This group advocates for women’s rights, provides resources and support for women physicists, and organizes initiatives that aim to reduce gender disparities in the field. We invite all members who are passionate about this cause to join the EDI Working Group and contribute to our efforts to make physics more inclusive and equitable.

Additionally, in a significant milestone for our organization and a testament to our commitment to promoting gender equality in physics, we are thrilled to announce that our Vice President, Niloofar Jokar, has been named an Associated Member of the Working Group 5: Women In Physics of the International Union of Pure and Applied Physics (IUPAP).

Niloofar shared a statement that reflects the synergy between the missions of IUPAP and IAPS:

I am thrilled to become involved as an Associate Member of Working Group 5: Women In Physics of the International Union of Pure and Applied Physics (IUPAP). This achievement signifies not only a personal milestone but most importantly reflects the shared commitment of IUPAP and the International Association of Physics Students (IAPS) to promoting inclusivity and equity within the scientific community.
Both organizations are dedicated advocates for diversity, recognizing the vital role women play in advancing the field of physics. Together, we are determined to break down barriers, advocate for gender equality, and empower the next generation of female physicists. Our collective mission emphasizes the importance of collaboration and solidarity in driving meaningful change.
My appointment to Working Group 5 is a tremendous honor and aligns perfectly with my passion for creating a more inclusive world of science. I am deeply committed to contributing to this mission and working alongside dedicated individuals who share our vision.
In this role, I look forward to bringing the perspectives and insights of the youth community in Physics, attained from my involvement in IAPS as the Vice-President to the discussion on gender equality in physics. My enthusiasm for promoting diversity and inclusivity in science is persistent, and I am excited to embark on this journey with IUPAP and IAPS.
Together, we can make a significant impact and pave the way for a more equitable and diverse scientific community.

As always emphasized by Michel Spiro, the President of IUPAP: “yes we can and yes we must!!”

Niloofar Jokar, IAPS Vice President & Events Manager

As we celebrate this day, let us all reaffirm our commitment to fostering an environment where every aspiring scientist can thrive, regardless of gender. Let’s work together to ensure that women and girls in science are recognized, supported, and empowered to achieve their full potential.

Categories
Uncategorized

Astronomy as a Tool for Mental Wellbeing

In a world filled with hustle and bustle, it’s easy to feel overwhelmed by the demands of modern life. Our daily routines often leave little room for introspection and self-care. But what if we told you that the cosmos could hold the key to unlocking inner peace and enhancing your mental wellbeing? Enter the “Astronomy as a Tool for Mental Wellbeing” workshop! Coorganized with the International Astronomical Union, the Department of Science & Innovation of the Republic of South Africa and the NRF – South African Astronomical Observatory.

A Universe of Benefits for Your Mind

Mental wellbeing is a hot topic, and for good reason. In today’s fast-paced world, stress, anxiety, and other mental health challenges are on the rise. The “Astronomy as a Tool for Mental Wellbeing” workshop offers a unique perspective on managing and improving mental health.

Why Astronomy?

The project titled “Astronomy for Mental Health” aims to explore the ways in which astronomy can serve as a positive influence on the mental well-being of all people. The project not only focuses on the intersection between mental health and development but also capitalizes on astronomy’s ability to inspire and facilitate interdisciplinary efforts to address this pressing issue.

While the use of astronomy for mental health support is not conventional, there is growing evidence that nature-based interventions can have a beneficial impact on mental well-being. Previous research has indicated that nature-based activities like horticulture and gardening can lead to improved emotional states, better interpersonal relationships, increased physical activity, and a stronger sense of community involvement. These findings are consistent with Kaplan’s Attention Restoration Theory (ART), suggesting that nature can offer a meaningful distraction from life’s stressors.

Whether experienced directly or through simulations like potted plants and visual media, nature has been shown to rejuvenate mental energy, uplift mood, and provide a sanctuary for renewed focus. Experiencing awe in nature, a state often induced by astronomical phenomena, has been linked to positive emotional effects, ethical decision-making, and increased prosocial behaviour.

Although extensive research exists on the benefits of nature exposure, limited studies have specifically investigated astronomy’s role in improving mental health. Initial interventions have revealed that activities such as stargazing can positively affect mental well-being and empower communities grappling with psychological challenges.

What to Expect

Introduction

The Untapped Potential of Astronomy in Mental Health

  • Explanation of the flagship theme “Astronomy for Mental Health.”
  • Presenting evidence and theories supporting astronomy’s role in mental well-being (e.g., Attention Restoration Theory).

Changing Perspectives Through Astronomy

  • How astronomy can shift our perspective about life and stressors.
  • The concept of “cosmic perspective” and its potential mental health benefits.

Practical Activities and Tools

  • Introduction to astronomical interventions and tools for mental well-being.
  • Brief demonstration or examples (e.g., virtual stargazing, astronomy-based meditation techniques).

Who Should Attend?

This workshop is suitable for everyone, regardless of your level of expertise in astronomy or your familiarity with mental health concepts. Whether you’re a seasoned stargazer, a budding astronomer, or simply looking for new ways to improve your mental wellbeing, “Astronomy as a Tool for Mental Wellbeing” has something to offer.

Date and Venue

The workshop is going to be an online workshop, hosted on Zoom, on the 4th of November.

Categories
Article of the Month IAPS 2023-2024 jIAPS

Mind-Matter Collider – jIAPS October Article of the Month: The Impact of Artificial Intelligence in Physics

Author: Octavian Ianc, University of Bucharest, Romania

Illustrated by Kyoka Stone, University of Toronto

Imagine that you are a researcher at CERN. Some of you already are, others have this on their schedule a few years in the future. Now, what are you doing there? Among other things, you’re analyzing hundreds of petabytes of experimental data. Assuming that you’re a sane person who doesn’t want to spend the next few million years stuck in front of a computer, you don’t do this by hand. You use some machine learning algorithms¹. These algorithms are artificial, no one has seen classifiers growing in trees. And, if my university lecturer did not make up definitions out of thin air, they are, in a way, intelligent.

Dramatis personae: artificial intelligence and physics.

It all began in the last few years, when lots of commercial AI implementations became available. Actually no, it began in 1997, when Deep Blue beat Kasparov in chess. Or in the 50s, when Turing wrote something about tests and machines. No, even earlier, with those philosophers babbling about formalizing logic and reasoning. It’s almost impossible to come up with a definite answer regarding when the idea of artificial intelligence appeared. What’s certain is that things which someone from 50 years ago would have considered as intelligent are around us. For now, and probably for ever.

We’re physicists: dedicating our lives to studying the different phenomena that surround us. Wouldn’t it be, and this is a huge understatement, absolutely crazy if one of these phenomena turned everything around and started studying us? We’ll get there soon, let’s take it gradually.

Marvin Minsky, one of the pioneers of the field, defines artificial intelligence as “the science of making machines do things that would require intelligence if done by men”². This encompasses a lot of stuff. While not being the first things you think of, sorting a list of numbers or navigating through a network are tasks that would require a fair share of human intelligence. Those are boring, we won’t talk about them. We only want true intelligence here. So we’ll have true intelligence. And also physics. And cats – everyone loves cats.

As you’ve noticed by now, intelligent algorithms are a cornerstone of modern research, both in physics and in most other fields, especially when it comes to finding hidden patterns in huge datasets. An algorithm is better, faster, and does not get bored nearly as quickly as we do. Another important field where AI is a great competitor to traditional approaches is in the modelling of complex systems. When talking about predicting molecular properties³, predicting weather⁴ or, analysing complex economic parameters⁵ (why not?), artificial intelligence is able to do some feats for which classical methods need orders of magnitude more time or are outright incapable of.

This link between physics and the thing called artificial intelligence is however nothing new. From the 70s, researchers worked on something which would later be called a Hopfield network⁶, named after J.J. Hopfield, a physicist who brought this into attention. Until then, everyone thought information had to be stored in a straightforward way: words written on a piece of paper, 1 or 0 bits in a hard drive, and so on. What these guys did was to prove this is not always the case. You can also store information using the connections or couplings between elements of a system. In a nutshell, these networks are very similar to the Ising model for magnetism, in fact they’re inspired from it. You have a grid of tiny magnets which can point either up or down, and are coupled between each other. If the coupling strengths are suitable and the system is left to evolve, it will converge, from any initial state, in one or a few chosen states (“memories” of the system).

Now, memory, intelligence, analyzing tons of data in a blink of an eye, all those don’t sound horrible at all. ChatGPT helping with that pesky programming task sounds even better. Yet, as one famous economist put it, ‘There ain’t no such thing as a free lunch’. All these shenanigans come with their fair share of disadvantages and problems.

First of all, to put it frankly, we have no idea what most of these algorithms are doing, or why they are giving a certain output. This is especially true about deep neural networks, the workhorses of a lot of machine learning applications. As a simple example, we can take any task which has something to do with images (finding faces, classifying cats etc.)⁷. These are, most of the time, accomplished with convolutional neural networks (CNNs). Different operations are sequentially applied to the image’s pixel values, ending up with the desired result (a number, a category, whatever). Let’s say we try to analyze such a system. The first layer or couple of layers are quite easy to understand: they detect edges, gradients, basic image features. Surprisingly, this is extremely close to how our visual system does its job. However, if we try to go past this, we’re more or less stuck⁸. It’s quasi-impossible for a researcher to get even a general idea about why the network does what it does. All we see is some numbers. If you have seen the movie Inception (if not, you definitely should), it’s kind of like that. There, the protagonists are navigating through an intricate world, which interconnects levels of reality with dreams. Understanding a deep neural network is similar, but we’re still stuck in the uppermost levels.

Let’s get a bit more intellectual, calling in some philosophy. At its core, any software piece we could refer to as intelligent is nothing more than a set of mathematical rules that is applied to data collected from the real world. When something like this is capable of doing independent research, what happens exactly?

A point can be made even aiming at the fundamentals of the scientific method. Suppose we analyze experimental data using an AI. We obtain predictions, we can verify those predictions. However, what we’re doing is that we’re morphing an unknown, the physical phenomenon we’re trying to study, into a different one, the model that was trained on that data. Although we can, in a sense, predict the real phenomenon, we still don’t have the vaguest of ideas about the governing laws. We just have a black box that supposedly can predict it. Although we have some results, is this still science? This looks similar to the differences between science and engineering. Very broadly, a scientist is interested in understanding phenomena, while an engineer aims to harness these phenomena and provide useful results, while still keeping at least a general understanding of the process at hand. When using an AI model to analyze data and make predictions, we’re most of the time losing even that general understanding. One might dare to say this is neither science, nor engineering.

We’ve traditionally referred to mathematics as a man-made tool, which we use to harness the unpredictability of the world around us. The weirdness happens when this math starts creating other math. The mere idea that it is a tool, stemming from our minds and being entirely dependent on it, begins to shatter when this math starts doing stuff without us. It’s as if a hammer would start building by itself. Or as if a cat from your dream would scratch you in real life. There’s even more to this. Gödel’s incompleteness theorems⁹, important results of mathematical logic, state that if you start with a finite number of assumptions (axioms), you would be unable to prove all true propositions of that logical system. As a consequence, you won’t be ever able to prove or disprove that system as consistent. For our AI-scientist, this would mean that it, by the virtue of its own existence, places hard limits on its abilities. For us humans, limitations come mostly from the physical world. I can’t run at 500 km/h because the muscles in my legs are not strong enough, due to air resistance etc. For mathematics (and, as a consequence, physics), the mere fact that it exists creates a constraint on itself.

To sum it all up, the marriage of artificial intelligence and physics has and will continue to revolutionize the way we do research, and not only that. In the midst of these scientific and philosophical ponderings, we find ourselves both awe-inspired and cautious, marvelling at the possibilities while recognizing the need for responsibility.

References:

  1. “AI at CERN | sparks.web.cern.ch.”

2. Minsky, “Semantic Information Processing.”

3. Wiercioch and Kirchmair, “DNN-PP.”

4. Hickey, “Using Machine Learning to ‘Nowcast’ Precipitation in High Resolution. | ai.googleblog.com.” 

5. Bickley, Chan, and Torgler, “Artificial Intelligence in the Field of Economics.”

6. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities

7. “Deep Learning (Adaptive Computation and Machine Learning Series): Goodfellow, Ian, Bengio, Yoshua, Courville, Aaron: 9780262035613: Amazon.Com: Books.”

 8. Zhang et al., “A Survey on Neural Network Interpretability.”

9. Gödel, “On Formally Undecidable Propositions of Principia Mathematica And Related Systems.”

Categories
Announcements

IAPS New Leadership Following Annual General Meeting

The International Association of Physics Students (IAPS) is delighted to announce the successful conclusion of its Annual General Meeting (AGM), which took place from the 5th to the 6th of August. During this pivotal event, the organization elected new Executive Committee Members and welcomed distinguished individuals to the IUPAP AC5 (Affiliated Commision 5) Council.

IAPS, a global network of physics students and physics enthusiasts, remains committed to fostering international collaboration and the advancement of physics education. The AGM serves as a crucial moment for IAPS, as it ensures the continuity of the organization’s mission.

Key Highlights from the AGM:

New Executive Committee Members

After a rigorous election process, IAPS is proud to introduce its newly elected Executive Committee members who will lead the organization forward for the upcoming term. These dedicated individuals, chosen from across the globe, bring diverse backgrounds and a shared passion for physics. Their commitment to IAPS’ values is a testament to the organization’s bright future.

The results of the elections are as follows:

  • Cyrus Walther – President
  • Mario Gaimann – Treasurer
  • Thibault Fredon – Secretary
  • Niloofar Jokar – Events Manager
  • Marisol Castellanos – Members & Advocacy Manager
  • Dimitris Gkavakos – PR Manager
  • Anna Christoforidou – Outreach Manager
  • Roberto Ciccarelli – IT Manager
  • Gabriel Barrios – Recruitment Manager

IUPAP AC5  Council Appointments

IAPS is honored to welcome esteemed members to the IUPAP AC5 Council. These individuals, recognized for their outstanding contributions to physics advocacy, will play a vital role in furthering the goals of both IAPS and IUPAP. Their expertise and dedication are expected to enhance the impact of early career physicists worldwide. The Council is made up of the following members:

  • Cyrus Walther
  • Niloofar Jokar
  • Irene Carrión López
  • Damian Ziomko
  • Sabine Rockenstein
  • Mario Gaimann
  • Dimitris Gkavakos
  • Duarte Graça
  • Socrates Varelogiannis
  • Zlatan Vasovic
  • Thibault Fredon
  • Borko Popovic

Strengthening Global Collaboration

During the AGM, the President officially announced IAPS’ affiliated partnership with the International Science Council. IAPS is one of the 15 select few Youth Academies & Associations that are now affiliated with the prestigious ISC.

IAPS President, Cyrus Walther, expressed his excitement about the new leadership and the future prospects of the organization, saying, “The AGM was a crucial success, reaffirming our commitment to promoting collaboration amongst physics students across the globe and providing valuable experiences to our members. I’m excited to work together with our new Executive Committee members and the IUPAP AC5 Council to bring positive change and engagement to the global physics community.”

Categories
Announcements

Statement of Support for Our Members in Morocco Affected by the Earthquake

Dear Members,

We are writing to express our solidarity and unwavering support for our fellow physics students and their communities in Morocco who have been impacted by the recent earthquake. Our thoughts are with you during this challenging time, and we want to assure you that you are not alone in facing this adversity.

We also extend our condolences to those who may have lost loved ones, suffered injuries, or experienced damage to their homes and property. We understand the profound challenges you are facing, and we are here to offer our support, empathy, and assistance in any way possible.

In times of crisis, it is essential for us to come together and offer our support to those in need. We encourage all of our members to reach out to their fellow students in Morocco, offering assistance, encouragement, and empathy. Whether it’s through academic support, emotional comfort, or practical aid, every gesture of solidarity makes a difference.

We are providing you with a link to a donation page that aids the people of Morocco:

https://www.globalgiving.org/projects/morocco-earthquake-relief-fund/

Our global community is resilient, and through our collective efforts, we can help rebuild and support our friends and colleagues in Morocco.

With heartfelt solidarity,

Executive Committee Members

International Association of Physics Students

Categories
IAPS 2022-2023 Interviews jIAPS

An Interview with Niloofar Jokar (IAPS Events Manager)

Here’s the latest in the series of EC Interviews – the jIAPS Editor-in-Chief challenged themselves to interview all of the EC members before the end of the year. This one was completed on time, but we’ve only just got around to uploading it. 

This time, it is the turn of Niloofar, the IAPS Events Manager, to be interviewed:

What are you currently studying?

I’ve just graduated from my Bachelor’s degree in Physics, Astroparticle Physics subdivision, at Isfahan University of Technology in Iran. I’m looking for the next step for graduate studies and considering options for PhD.

What does your role as IAPS Events Manager involve?

My main task is to supervise, maintain and assure that all events are completed successfully, and to support every Organising Committee (OC) along the way on behalf of the EC. This may sound cringy, but it often feels like a motherhood experience where you feel equally and deeply responsible for every single detail about each event as if it’s your child but you also believe in the OCs, respecting them to thrive freely and have their own creativity towards a successful event. To state the obvious, the events IAPS organises would not be as great without their amazingly dedicated and skilled OCs. The role of the Events Manager is to be present in the background, providing support and guidance, and making sure that everything is going well.

Every single IAPS event is close to my heart – I want to be available 24/7 to them. It doesn’t matter whether they have an IT or a financial issue, or if a hotel is not going along with the room bookings, it is my responsibility to jump in. The Events Manager also has the knowledge and connections to direct the OCs to more skilled people in a particular area.

Which events have you supported this year?

ICPS 2023 (International Conference for Physics Students), PLANCKS 2023 (Physics League Across Numerous Countries for Kick-ass Students), IPT 2023 (International Physicists’ Tournament) – they are the main ones, the major ones in 2023. I also joined IAPS4Materials and represented IAPS at the ‘Women of the World in Physics!’ Event, the second edition of which will be jointly organized by IAPS. There are also the events from the previous year which I have a smaller contribution to, completing the final steps of PLANCKS 2022 and ICPS 2022. Then, we are continuing the process for PLANCKS 2024 and ICPS 2024.

What is your favourite event that you have supported as IAPS Events Manager?

That is like asking which is my favourite child – once again all of the events are close to my heart. I got to experience PLANCKS 2023 in person and it was amazing. I’m also looking forward to ICPS 2023. All of the events are great!

At PLANCKS 2023, you had to introduce IAPS at the Opening Ceremony. Do you enjoy the public speaking element to being IAPS Events Manager?

In IAPS, the community is always friendly and warm, making you forget about the worries of a big stage. So since the beginning I found any presentation very comfortable and enjoyable, which is honestly the best practice for soft skills improvement. As soon as I stand up to speak, it feels like talking to a big group of friends!

What are some of the biggest obstacles of supporting events?

This is completely different with smaller events and major ones. With major events, these are big projects, and you have a team of very dedicated people involved for two years. As the time gets closer to the event, the pressure becomes really high. The role of the IAPS Events Manager is to dial down the pressure and by clear guidance make sure that the OC feels supported. As for minor events, I would say an obstacle is to maintain consistency as these events must take place more frequently. For these OCs, members are expected to remain in the project in a shorter period of time. This means a totally new OC composition is required for the next edition in only a few months. So once the project is over, finding a new OC and transferring the knowledge may be a bit challenging.

Who do you have to work closely with in your role as Events Manager – both on the IAPS EC (Executive Committee) and beyond it?

Outside of the EC and before the OCs, the Events Secretary is the main one, aware of the details of the job obviously as the main source of assistance for the Events Manager; however, the IAPS Events Manager is connected to almost all areas of IAPS and you have to remain in really close contact with everyone involved. I’d have to name all the EC members… Who do I have to work most closely with on the EC? I’d say Cyrus (President), Mario (Treasurer) and Gabriel (Vice-President and Recruitment Officer). 

On the management side, I have to keep in contact with the president(s) of each OC. There were times when we had meetings with the OC of a major event which lasted two or three hours – these meetings were long but a blessing and absolutely essential. The details of the event become very important. You have to work long hours for these meetings and it may seem really strange, but I suppose that’s the side of the story unseen by many. From these long meetings, you sometimes feel closer and attached to that event even more than you already have, which is a beautiful experience on its own.

I’ve just thought of another question from that answer – approximately how many people have you become in close contact with through being IAPS Events Manager that you wouldn’t have spoken to otherwise?

How many? Many, many people… I don’t think I can put an accurate number on it. I’ll go with fifty or more, regarding people I’ve worked with directly – and maybe twenty people I have been contacting as a weekly routine and know well – but I’m sure it’s more than that. These are the people I’ve spoken to regularly. 

What skills do you need to become IAPS Events Manager?

You need a complete set of skills! The most important is perhaps time management – you have a lot of tasks and ongoing projects, as well as projects which have already happened and those upcoming events. The workload is no joke. Also, the ability to communicate with different OCs – each is from a different country, with a different culture which is very exciting; they are truly international. It can be a challenge to choose the pace each OC feels comfortable to go with while securing the success of the tasks; so you definitely need communication skills and time management on top of everything else.

How can IAPS members get involved with organising events?

It’s very simple: just drop an email to events@iaps.info. If you have a brand new idea for an event, we’d love to hear from you. The EC is there to guide you, as the organising committee of an event, and to provide support for you, so you can learn step-by-step as you organise the event. Organising events may seem scary from the outside, but the EC is very supportive and can show you the way. You shouldn’t be hesitant about contacting us – whatever idea you have within IAPS context, we’ll find a place for it!

How have you found the experience of being part of the IAPS EC?

It has been quite a challenging experience for me this year. There have been some environmental difficulties in my country which have provided some serious challenges and affected my work pace as well. But even though this happened to me on a personal level,… how can I phrase it? IAPS is more than an association. I have gained friends for life. I am grateful for the support of my fellow EC members. I’ve learnt lots of lessons and definitely enjoyed this experience. This is more than a community; it is like a family. You are involved in so many things for such a long time, it really helps to form unbreakable bonds. Having such valuable friendships touches upon personal development as well.

What has been one of your best moments as part of the IAPS EC this year?

The ending of the Mulhouse meeting* – it was the first time we had all met each other. By the end of the meeting, we really felt like a team, gathered together and backing each other up. When you’ve been working for a year together and only meeting through the screen, it’s hard to create the human element of the community. Meeting in person was amazing. 

*You mentioned the Mulhouse meeting. Can you summarise what this is?

Sure! IAPS as an association has its official seat in Mulhouse, France, where the headquarters of the European Physical Society (EPS) is located. The Mulhouse meeting is a memorable and important time of the year when the respective IAPS EC of the term gather from all around the world to meet in person in the headquarters of EPS, in order to have constructive discussions over the work plan of the term and much more. It usually happens a few months into the EC term, around December.
In a nutshell, it means about a week of highly intense and productive meetings in Mulhouse, nice IAPS stickers EVERYWHERE, accompanied by even nicer people but very bad weather, ending it all with a wholesome EC photo in IAPS t-shirts (no jackets on!), in -1 °C outdoors in front of the EPS building, questioning your life decisions – things we do for IAPS!

The bids for PLANCKS 2025 and ICPS 2025 are currently open. Can you summarise why people should bid to be the organisers of one of these events?

In a nutshell, it’s awesome. Both are very huge projects. The process takes two years, plus the aftermath. At the end of the day, it leaves you with a very valuable experience. The result of your work is something which people, as participants of the event, remember for a long time. On the surface, it is just a conference or a competition, but it’s actually a life-changing experience – I’m not exaggerating here. These are actual words we’ve received from participants. It’s that beautiful. You as an organiser of these events get a chance to gain and create awesome experiences for physics students around the world, and an amazing time for everyone.

The interview concluded with reminiscences of previous IAPS events.

Categories
jIAPS

jIAPS 2023 is out!

A new edition of your favorite IAPS journal is finally out! Among the colorful content of this edition, you can read reports from the latest IAPS events (and your PLANCKS preliminaries!), welcome messages from new members, a special section celebrating the 35 years of IAPS and outstanding article & creative contest entries.

Curious to find out what else is there? Grab your copy now!

Categories
Article of the Month jIAPS

jIAPS September Article of the Month: The Good Scientist

Author: 🇩🇴 Enrique Casanova, Dominican Republic

Illustrated by: Juan Iribarren, Argentina

Why does it feel like being a scientist is so heavy? Why do science students get so stressed and exhausted? Why do students have a greater tendency to feel dissatisfied with studying, even when it is a subject that they really like?

We live in a world of supply and demand; this is the law to move markets from low prices to high prices and vice versa. Being a variable dependent on human need and whim, this “law” is applicable not only in the economy but also to humans themselves. It even applies to those peculiar and strange people with a little more curiosity, with a little more desire to discover, and with a little more ambition than the rest of the people.

Scientists (also including science students) have gone through different stages throughout history, allowing themselves to be directly or indirectly influenced by society and the human demand given in a certain period of time. From the need for inventions for the great kings to the creations of weapons for the greatest wars, all the demand for new knowledge was (and is) rooted in the main power (or powers, I’m not just talking about the state) – the same one that pays scientists with funds.

Today, there is much more freedom for the researcher. They can even choose research topics to suit their own preference in most cases.

Is this then a total victory for today’s scientist?

Well to put it short:

no…hopefully…

We are facing a second problem, which is not directly related to humans; rather it is like the spoiled child who grows very fast and reaches us in height, believing in the long run that he can control us so that we buy him his favorite sweets. Frankly, there are times that it manages to manipulate us, taking away hours of sleep and motivating us to procrastinate, watching videos of kittens.

Technology is the most perfect human creation to satisfy needs: health, water services, electricity, telephones, and endless other things, all to please us. Of course, not all humans have the same facilities to acquire technology, this being the case, unfortunately, of people with few resources or by countries that have more control over the free market.

Believe it or not, technology has not always been in our days, and it is not essential for the survival of us as living beings; although it is totally true that we have placed ourselves at the top, being the dominant living being (on the surface at least) of the planet. We dominate thanks to this, but many times technology dominates us.

Really, in my opinion, that it “dominates” us sometimes is not the real problem in today’s society. Since depending on the habits of the person, they would not necessarily see technology as dominant or something dependent on their life, but as a tool. So the fundamental problem is the exponential advance which shapes our way of living. Simplifying, the individual may not be dominated by technology, but society and science are dependent on it. This is what I wanted to get to, then we are forced to learn to use it, since the value of the individual in society increases by the technologies that they know how to use, and in science the same thing happens.

The value of the scientist can then be subdivided into two categories:

  1. Specific and general knowledge of their area.
  2. Technological, say instrumental, knowing how to manipulate and create devices, or software such as programming languages.

The first is theoretical knowledge, whence its value is highest in theoretical sciences, as well as in pedagogy. This was the prevailing value for a long time. Everyone in their time was dying to see and listen to Richard Feynman giving a lecture on physics, or to read about the debate on Bohr’s quantum physics and Einstein’s relativity. The main characteristic of this class of scientists is creativity. Having knowledge without creativity is totally utilitarian.

While on the other hand, the alternative class of scientists is utilitarian, specializing in having knowledge and knowing how to maximize utility on scientific or technological tools whose main purpose is for development.

The two classes are totally necessary and essential when it comes to research in science. Some clear examples of this type of progress are the European countries: Germany, Switzerland, England, etc. and a clear counterexample is our country (the Dominican Republic). It has great theoretical minds but very few experimental minds due to lack of investment in laboratories and equipment.

The great demand for theoretical but more technological scientists, with a wide range of empirical knowledge and a wide range of experience, is useful for developing experiments and for organizing computational information, including skills such as several languages, good communication, as well as writing and so on.  I could fill this page with all the characteristics, skills, aptitudes, and attitudes that make up a good scientist today. This great change in the last 250 years in human development has generated and will continue to generate a constant and heavy stress on today’s students of science, especially, in my opinion, those of physics.

Physics is the science that mixes with all of them to a greater extent. For thousands of years it was only mixed with mathematics, but as things progressed over time, physics became the most interconnected science of all, being then the deepest, in the sense that it always seeks the great questions of existence and the primordial rules of the cosmic dance. Therefore, the physicist has to study not only physics and mathematics, but in general a bit of each of the basic sciences, since physics applies directly to the others. Of course, we are talking about the “good scientist”, that is, the most demanded physicist in the scientific market.

And so…?

The group of ideas raised previously, makes it clear to us the problem and the main reasons why the science student does not feel very comfortable with science. Even in the classes the teachers demand us as if we had all the free time to do their homework and practices, they falsely think that we do not make an effort to learn. Knowledge and technology advance faster than the human understanding of how it advances. It is heavy having to learn about something while at the same time moving forward. It even takes away the desire to continue learning about it, giving us bitter feelings for not being able to keep up with the progress.

Humanity has reached a point where it is not keeping up with the exponential growth process of science/technology, and only a few people can bear the weight of so much.

In order to cope with the rapid changes in the modern world, it is necessary to specialize in one of the many areas or, master’s degrees, specialties, doctorates… We must leave behind the idea of ​​being a scientist and focus on being a scientist with a last name. The problem with this is that many do not know what their specialty as a scientist would be and then discover over time what their most specific vocation would be. Thus, in this way, we avoid trying to fill our memories with unnecessary information and only study the parts of science that we are going to investigate or teach. It is good and I strongly advise you to take your time to analyze the question: what do I want to be at the end of the road? Having an unstable beginning with doubts is totally normal, so take the time to get to know yourself, just as the universe changes, the human changes twice. That’s why when you are making a decision, you shouldn’t feel bad or blame yourself for making another or changing it, that is, again, totally normal. The important thing is to stop and continue. Change is natural, just as the water that falls in my shower is not the same as yesterday, the man who is taking a bath is not the same as yesterday.

“You do what you are; one becomes what one does.” Robert Musil

Categories
Interviews jIAPS

Interview with Marisol Castellanos and Anna Christoforidou

The jIAPS Editor-in-Chief is continuing to interview the 2022-23 EC – they have nearly reached the end, both in terms of the EC members to be interviewed and of their time as jIAPS Editor-in-Chief! This time, we have combined two interviews into one so you get two-for-the-price-of-one. Enjoy reading the interview.

What are you currently studying?
Anna (IAPS Outreach Officer): I’m currently in my last year of Bachelor studies at the Physics Department of the University of Athens. My special interests include (but are not limited to) Photonics, Plasmonics and Biophysics. My thesis on Computational Electromagnetics is titled: ‘A Comparative FDTD/Analytical Theory Study of EM Wave Propagation in Dielectric, ENZ and Plasmonic Media’.
Marisol (IAPS PR Manager): I finished my Bachelor degree of physics at the Physics Department of the University of San Carlos de Guatemala. My main interests are Complex systems, Biophysics and Computational Neuroscience.

What does your role involve?
Marisol: The PR manager is responsible for overseeing the outward look of the association, managing its public voice and promoting important information to the members. They actively manage social media and run advertising campaigns on different topics, while promoting inclusivity. Additionally, they handle the creation, design, and distribution of advertising materials such as flyers and brochures. They also manage the merchandise store. They work closely with jIAPS to publish the IAPS magazine annually and support the IT manager in website management.
Anna: Apart from organizing and supervising School Day and IDL activities/events as well as reviewing and approving the outreach grant proposals, the role of the outreach manager is being unfolded mostly behind the scenes. Having weekly meetings with various associations, organizations and outreach initiative projects, takes up most of my time as an outreach manager. The goal is to get to know people in the outreach fields, connect them with IAPS and brainstorm accordingly to create collaborative projects. So even if 20-30% of those meetings turn out to become a direct outreach project, all of them are a different learning experience.

What is your favorite part of your role?
Anna: The aforementioned meetings are definitely my favorite part of my role. More specifically, getting to know and interact with different personalities with a common passion for outreach. One of the most emotional experiences was getting to know the Pakistanee Professors Dr. Anisa Qamar and her colleagues, who are organizing the International Young Physicist Tournament (IYPT) 2023 for the first time in Pakistan. These women are real fighters in the science communication field against all obstacles, they truly inspired me. Another example that comes immediately to mind, is the opportunity to connect with Dr. Pranoti Kshirsagar and The Science Talk project. A YouTube channel owner, podcast creator, invited speaker to conferences and workshops, scientific blogger and of course an active researcher, she does most of her work voluntarily with the goal of helping fellow scientists communicate their work better. A humble and giving person to the core, Pranoti has become a mentor to me, we are having meetings regularly and the collaborative ideas are many to date.
Marisol: My favorite part was being able to express the message we wanted to convey in each post or activity through art and design. Art is a voice that doesn’t need to speak. I enjoyed including everyone, and that was reflected in the posts and campaigns we created, such as Women in Physics.

Can you give one top tip for applying to become part of the EC?
Anna: Give as much thought to your letter of candidacy as to your CV. A strong CV is nothing if not supported by an organized and realistic letter of candidacy.
Marisol: One top tip for applying to become part of the EC is to demonstrate your passion and commitment to the organization’s mission and goals. Being genuinely passionate about the organization and its mission will make you stand out as a dedicated and enthusiastic candidate. It will also show that you are genuinely interested in making a positive impact and contributing to the organization’s growth and success

Which part of IAPS do you enjoy the most?
Anna: Getting to travel and meet people with similar interests, all around the world.
Marisol: Sharing with different people and cultures which have similar interests but different perspectives. Besides, go to events and meet amazing people with whom you create networking.

What’s it like being on the EC?
Anna: Being part of the EC is first and foremost way more time consuming than I imagined. But I am really grateful that even though I became a member in the middle of the year, I was immediately welcomed by the other guys that helped me adjust to the workload and the EC routine procedures. I truly believe that the EC experience is directly dependent on and changes according to the people that constitute it.
Marisol: What I liked the most about being on the EC was the diversity of people and cultures I encountered. Each of them taught me valuable lessons that helped me grow both professionally and personally. Despite the challenges we faced, it taught me to work as a team and improved my skills.

What advice would you give to someone who was thinking of joining IAPS?
Anna: Do not even think about it. I am a firm believer that one should seize every opportunity that comes their way. Any physicist can find or create something around their interests in IAPS.
Marisol: Be honest and clear with your goals, and assess if you have the necessary time to perform the role adequately. Enjoy the constant learning.

How do you prefer spending your summer?
Anna: A kind of childish literature book at a nice, calm beach in Crete (the biggest island of Greece, where I am from).
Marisol: I enjoy climbing volcanoes or mountains. I love watching the sunset, listening to the ocean waves, and appreciating nature. I also meditate and go cycling.