Categories
IAPS 2022-2023 jIAPS

jIAPS August Article of the Month – Searching for the Invisible: New Dark Matter Detector Unveiled

Author: Darina Öö, King’s College London, UK

With the capability to detect elusive dark matter particles, the newly developed detector, as tall as Big Ben, marks a potentially significant milestone in the search to understand the mysterious nature of the universe.


Dark matter is one of the biggest mysteries of the Universe. Astronomers have been trying to understand it for decades. They’ve figured out how many stars and how much gas there is by measuring the radiation they give off; but when they calculate the gravity of stars, galaxies, and galaxy clusters, the numbers just don’t add up. They’re too massive.


So, what’s wrong? Well, there are two ways to look at this. One is to say that there’s matter in the Universe that we can’t see with our telescopes (which is referred to as dark matter). The other is to change our understanding of gravity. Most experts choose the first option. And who can blame them?


Rewriting the laws of physics is no easy feat. Plus, every time scientists try to explain one observation with a new law of gravity, they end up contradicting another. So, the idea that there’s some invisible matter out there seems like the better choice.


Most astronomers assume the existence of dark matter. What does it consist of? Could it be objects common to the cosmos, too dim for our telescopes? Black holes, brown dwarfs, something like that… Undoubtedly, they also contribute to the invisible matter of the Universe; except that there is five times as much dark matter as ordinary matter (1).


We know something about the eras when the first atomic nuclei and atoms were formed; and based on this knowledge, there simply cannot be as many atomic nuclei in a cubic parsec today as the dark matter requires.
True, these calculations are not completely reliable. There are some rough edges there that you can grab if you want to. Astronomers do not dismiss the possibility that it is not dark matter that is fundamentally invisible, and that our telescopes are not sensitive enough.


But what if the preachers of cosmology are right, and dark matter does not consist of atoms or nuclei? Then we’d have to admit that it’s made up of some other particles.

Figure One: An artist’s illustration of different dark matter candidates (2).

Physicists have a number of candidates for this role, see Figure 1. In their attempts to go beyond the Standard Model, theorists have accumulated a whole zoo of particles that may exist, but they are not certain.


Imagine that space is literally swarming with invisible particles. They pass through our bodies in an endless, huge stream.
Why don’t we notice this? Because these particles almost never collide with atomic nuclei or electrons. And only very sensitive detectors, specially designed for this purpose, can register them.
Well, it might be that they are no longer science fiction…


The AION (The Atom Interferometric Observatory and Network) detector, see Figure 2, is designed to detect such dark matter candidates – ultra-light bosons with a sub-eV mass such as dilatons, moduli, relaxions, as well as axions (3-4).

Figure Two: Official logo of the AION project (5).



AION’s proposed solution is a next-generation atom interferometer that employs the superposition and interference of ultra-cold strontium atoms, the same used in state-of-the-art atomic clocks (4).
However, such particles interact weakly and for them to enter into such interaction with an atom, it must literally crash head-on into the atomic nucleus. This is an extremely unlikely event, but these are the very rare cases that AION is designed to catch.


According to the New York Times: “The best way to shift the odds, as well as seek out a wider range of potential particles, is to make the equipment bigger.” And AION takes this to a whole new level (6).
The first stage of the project is to build and commission a 10m detector and develop the technology for a 100m detector located in a mine shaft (4). Just imagine a detector the size of Big Ben underground! The ultimate objectives would be a full-scale terrestrial kilo-meter detector and a satellite-based detector (3).

1. Cooke, M. (no date) Doe explains…dark matter, Energy.gov. Department of Energy’s Office of Science . Available at: https://www.energy.gov/science/doe-explainsdark-matter (Accessed: April 17, 2023).

2. Sandbox Studio, Chicago with Ana Kova. Four things you might not know about dark matter [Internet]. symmetry magazine. [cited 2023Mar7]. Available from: https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter

3. An Atom Interferometer Observatory and Network (AION) [Internet]. Aion @ imperial: Home. [cited 2023Mar7]. Available from: https://www.hep.ph.ic.ac.uk/AION-Project/


4. Badurina L, Bentine E, Blas D, Bongs K, Bortoletto D, Bowcock T, et al. IOPscience [Internet]. Journal of Cosmology and Astroparticle Physics. IOP Publishing; 2020 [cited 2023Mar7]. Available from: https://iopscience.iop.org/article/10.1088/1475-7516/2020/05/011
cernblind. CERN accelerating science [Internet].

5. The AION Logo | Drush Site-Install. 2022 [cited 2023Mar7]. Available from: https://aion-project.web.cern.ch/news/aion-logo

6. Whipple T. Scientists seek enlightenment in the deepest, Darkest mine [Internet]. The Times & The Sunday Times: breaking news & today’s latest headlines. The Times; 2022 [cited 2023Mar7]. Available from: https://www.thetimes.co.uk/article/scientists-seek-enlightenment-in-the-deepest-darkest-mine-9d9bz9bxt

Categories
IAPS 2022-2023 Interviews jIAPS

An Interview with Mario Gaimann, the IAPS Treasurer

For the latest in the series of jIAPS Interviews, the jIAPS Editor-in-Chief interviewed the IAPS Treasurer. Mario is studying for a PhD at the University of Stuttgart and the International Max Planck Research School for Intelligent Systems (IMPRS-IS).

Interspersed with IAPS tales and discussions about the jIAPS Photo Competitions, Mario answered the following questions: 

Why did you decide to do a doctorate?

I chose to do a PhD because I wanted to dive deeply into an interdisciplinary scientific topic. My project is on physics-inspired machine learning; the method is called reservoir computing. It can be used to perform time-series prediction tasks, even for cases where a prediction is very difficult to make – for example for chaotic systems, like the Lorenz attractor. For an introduction, I recommend this article in Quanta Magazine. The core of my work is replacing a neural network reservoir with simulations of physical systems. This way, we can understand the learning system in physical terms, tune it, connect its physical characteristics with its learning behavior, and potentially construct novel devices for unconventional computing in the future.

I started by studying for a Bachelor’s degree in Materials Physics at Friedrich Alexander University of Erlangen-Nuremberg, Germany. Then I studied for a Masters’s degree in Physics (with a focus on biophysics) at the Ludwig-Maximilian University of Munich, Germany. So I started by studying dead matter, then went on to studying living matter, and now I’m studying what makes matter “intelligent.”

What’s your favourite thing about IAPS?

Meeting people from different countries and cultures; going abroad and talking to new people… My IAPS addiction began in 2016, when I attended Lights of Tuscany and visited Pisa and Florence. I met physics students from Italy and other countries. I enjoyed being part of the community. That’s what I like about IAPS.

What are some of your IAPS memories?

When I was studying in the UK, I went to iaps4fusion, which was really cool. We visited the Culham Centre for Fusion and saw the tokamak. Then I attended ICPS in Turin, Italy – ICPS is cool and crazy! [Please ask Mario for his ICPS anecdotes, we’re not recording them here! – Editor] And bringing so many physics students to Munich, Germany through contributing to PLANCKS 2022 was truly amazing.

Why did you decide to apply to become IAPS Treasurer?

I have an interest in financing student events. It started with PLANCKS 2022 in Munich – Monique Honsa asked if I’d be interested in joining the organising team. I didn’t have much experience in finances then, though I’d co-organised some events, e.g. the DPG-Schülertagung (a national conference organized by physics students for high school students) in Germany in 2020. Through volunteering, I gained lots of experience: designing the budget, contacting sponsors, working in an international team, and learning about legal and fiscal details of association law in Germany and France.  

And when did I meet Cyrus [the current IAPS President – Editor] and how does that come into this story? Well, like me he was part of the committee which organised PLANCKS 2022. He was thinking of running for IAPS President and asked me if I’d consider joining the EC. Initially I wasn’t sure… I mean, it’s lots of work. In the end, I decided: let’s do it! 

For me, IAPS is not just some hobby. It’s about being professional and absolutely reliable, representing international physics students and always acting in the interest of our members. 

What can IAPS members request funding for, and how do they do this?

There are currently two grants available. First, you can apply for a grant to run an international event for IAPS members. At least 40% of the participants should be from a different country than the host country. IAPS can award grants of up to €1000, with the grant funding no more than half of the total budget. The international event can be anything from a summer school, to excursions, workshops or an iaps4x event: iaps4materials, iaps4fusion… You just have to present your budget, draft your programme and plan how many students you want to attend your event. 

You can find more details about how to apply here.

The other grant is for Outreach activities. For example, the School Day annual event, where you can receive funding to go into high schools and tell school children about physics, and do experiments; or the school children can visit your university. There’s also the International Day of Light, or you can come up with your own idea and receive funding for currently up to €300. 

I also encourage members to apply together with IAPS for an International Activity grant with the Council of Europe’s European Youth Foundation (EYF), please contact me (or future IAPS treasurers) if you are interested.

What’s the strangest thing someone has requested money for?

As surprising as it may be, we’ve only received requests for solid, sensible things this year… All I can think of is that at PLANCKS 2023, someone came up to me and said that they’d heard that IAPS has the funds to pay for their private travel after PLANCKS had finished. I don’t know where they got the idea from, but I thought they seemed serious, though it sounded like a joke. Our budget is limited in IAPS and will only be spent in the interest of our members! I had to decline their request of course. 

[Editor – I also overheard conversations at PLANCKS with people asking IAPS Treasurer whether he could fund their dinner and drinks and other things, but let’s not go into that… ] 

What advice would you give to someone who was thinking of joining IAPS?

Just do it! 

All you need to create IAPS events in your area are some physics friends, then you can form a local committee. You could organise small talks. In my local groups in NC Germany, we had events where you had a quiz-show style ‘answer questions against your professors’.

Be active, go to IAPS events! If there are no events, create events!

To get started you don’t need much; you just need motivated, engaged students, ideally with an international perspective. And of course you can also join IAPS as an individual.

What skills do you need to be the IAPS Treasurer?

Being IAPS Treasurer… What is takes a sense of responsibility. You have to be professional and have a true commitment to the role. It has happened in the past that a Treasurer has not been reliable and it has horrible consequences for the whole organisation; so I would say: if you do it, do it properly. 

It is quite some work, but there are so many benefits to being Treasurer of IAPS – you get to contact lots of people. You have some influence in shaping the spending of IAPS (within what has been approved at the AGM and in the end, the whole EC has to vote… but your opinion matters. If you say ‘no, we don’t have the budget’, people will listen to you). 

You get to go to some cool meetings – for example, I recently attended the Mid-Term Meeting 2023 of the International Science Council in Paris and got to meet representatives of so many international associations. You get to represent IAPS and have a lot of fun. I focused on potential partners who could support IAPS and on connecting with organizations in the Asia-Pacific region to make the ICPS 2023 in the Philippines more known. But I also met people from international associations I had never heard of: the International Union For Quaternary Research, which is about studying the ice age, the International Union of Speleology, an international body for caving… People you’d never meet, you can meet through IAPS. 

Any last words?

IAPS has a great network – you have friends in the whole world. If you need help applying for an internship or a placement, you can ask on the IAPS Discord and people answer you and provide support. The benefits are infinite! 

For only €10 a year, you can become a full member – join IAPS now! [You can check whether your country has a national or local committee on the IAPS website, and you can  join the IAPS Discord for free – Editor] 

Categories
IAPS 2022-2023 Interviews jIAPS

Interview with Zlatan Vasović (IAPS Fundraising Manager and Archivist)

The current jIAPS Editor-in-Chief has been interviewing IAPS EC members. Now it is the time for two Editor-in-Chiefs to interview each other. Zlatan Vasović was the jIAPS Editor-in-Chief last year in 2021–22, as well as the IAPS IT Manager. He is now the IAPS Fundraising Manager and the Archivist (and spoiler alert, he is hoping to apply for a position to continue in IAPS next year).

 jIAPS is currently looking for next year’s Editor-in-Chief. Could it be you? Email us at jiaps@iaps.info for more information on how to apply. 

What do you consider to be the most important aspects of IAPS?

What makes IAPS unique is that it is truly international. Through IAPS events, like ICPS and PLANCKS, you can meet people from the whole world. One aspect is less known and harder to access: becoming an IAPS volunteer, by joining a working group, the EC (Executive Committee) or jIAPS [Especially jIAPS; that of course is the most important aspect to IAPS – Editor].

What is the most challenging thing about being the past Editor-in-Chief?

Answering the questions from the current Editor-in-Chief, especially when she messages me every day and when I don’t know what to expect from the questions. I take it as a challenge and I love to see how jIAPS is developing.

I know you are always on the IAPS Discord, messaging people. How many IAPS members have you messaged in the last 24 hours?

About 20… but that includes people from NC Serbia and the EC. It was a busy day though. 

What do all past jIAPS Editor-in-Chiefs have in common?

One common trait is that they have a lot of interests – they are quite curious, versatile and multi-skilled. They can do a lot of things and be successful in all of them.

 What has jIAPS done this year that you would have done differently?

Everything!

Actually, I’m not dissatisfied with anything in jIAPS. There are two main things I would have done differently: I would have pushed for a separate jIAPS website, like a real news site [For context, the plans for this have been ongoing for  while and haven’t reached completion yet, and it doesn’t look like it will be happening anytime soon – the IT Working Group has lots to do]. 

The second would be more online meetings. I am just addicted to online meetings, so I would’ve run them more often, like every two weeks. [What’s the record we are on now? Is it a grand total of three meetings since last August? – Editor]

What is your advice for anyone who is interested in applying to join the EC?

Go through the website, read the information about the roles there. Read the reports from people who have previously held the position [These are on the IAPS Cloud. If you don’t know where to find this, just email jiaps@iaps.info – Editor]. Reach out to the current EC members – the most recent source of information is the person who is currently in that position. And don’t forget the internet – just google around and find more information about what that role is supposed to do in general.

[What a technical answer… definitely an answer from an Archivist – Editor.]

You recently attended the finals of PLANCKS in Milan. What was your most memorable moment from this IAPS event?

The culinary exercises while everyone else was doing theoretical exercises – as the observers at PLANCKS, we had to prepare lunch for the competitors. It was a nice way to bond and connect with the other observers. We were split into teams preparing different kinds of food. I enjoyed organizing my team in the most efficient way possible, to finish our task first. It was a fun experience – food connects people.

What non-IAPS and non-physics activities do you do in your free time?

None. I don’t have any free time… okay, alright. My true hobby is socializing with people. Sometimes it’s mixed with work, but I just enjoy meeting new people.

I am a big fan of movies: not the mass produced ones, but high quality ones. Besides that, I like searching for random things on the internet and learning new things every day. [Other hobbies Zlatan has includes annoying Editor-in-Chiefs on a daily basis and lurking on the IAPS Discord waiting for new messages to be posted – Editor.]

Which movies do you most enjoy watching?

A lot of them, actually. Some of them are classic films, like Casablanca and the Godfather; then others are less well known, but still high quality, like some Serbian and Yugoslav movies. Then there are some films which are in many ways bad but still have something interesting or unique about them. Need movie recommendations? Message me on Discord!

Was there anything during your time as jIAPS Editor-in-Chief which didn’t work?

There were things we started doing and never finished, or planned to do and never did. It shows that throughout the year, you have to reassess your priorities. 

For example, we were slow to set up the online edition of jIAPS, only publishing one or two articles on the website… but that works well this year. We also thought about sponsors. To be financially sustainable, jIAPS could have advertisements. But that didn’t work out, not yet.

What is your favourite part of your role as IAPS Archivist? 

No one sees me. I can just hide in the archives, and it’s a refreshing change from the other roles I’ve had in IAPS. The most interesting part is that you get access to all the records of IAPS and can find out what happened in every year since IAPS started. It’s a great power and you have to use it carefully.

How do you overcome challenges in IAPS?

It’s not much different from the other challenges in life. I learn about the challenge, get more knowledge and skills, and then I can overcome it. Just like in your studies, you can learn more advanced topics from the current year, which in the previous year would have been a challenge. Now you can overcome that challenge.

 By this stage, Zlatan was starving and wanted to go and have dinner, by don’t worry, all is not over – this article only includes half of the interview. The other half, with Zlatan as the interviewer, is yet to come.

Categories
IAPS 2022-2023 Interviews jIAPS

An Interview with Dimitris Gkavakos (IAPS IT Manager and DPO Officer)

The jIAPS Editor-in-Chief is enjoying interviewing the EC members so much that we already have another interview for you. This time, the  jIAPS Editor-in-Chief interviewed Dimitris, IAPS IT manager, who is currently studying at the National Kapodistrian University of Athens, Greece. 

The interview opened with a sneak preview of the most recent developments in the world of IAPS IT and a discussion of possible future plans for jIAPS.

Then, the actual interview started. The jIAPS Editor-in-Chief began with the usual opening question…

What are you currently studying?

I’m studying Medical Physics. To be more exact, I’m doing a small piece of research on a Gamma Camera, but thinking of shifting my focus towards neural networks and image reconstruction techniques, especially with all the fuzz on AI. 

What is your favorite part of your role as IAPS IT Manager?

When I first took over as IT Manager, I had a completely blank canvas. There was room to create stuff and provide space to build things. It was the most amazing experience!

What does your role involve?

I can divide the tasks into two categories: first, developing new resources; making them from scratch; the creative tasks; like designing elements of the website  and creating new resources. Then there’s the ‘boring’ stuff, like maintenance and debugging, and doing the sysadmin stuff.

What are your tips for overcoming challenges as IT Manager of IAPS?

You need to think outside the box and always assess possible risks. So, focus on maintaining things and keeping them running, rather than fixing them when they break down. Work smart, not hard.

What have you enjoyed the most about being part of the EC?

Being a part of the EC was more of a self-actualization thing for me; I really love to provide and care for people. Especially now that we provide for physics students across the world, you might think that we differ a lot, but in reality the phrase is “Different continents…same problems”. 

Also by joining the EC you get the chance to meet some truly amazing people and some very interesting characters – the knowledge and cultural exchange is on another level.

What skills is it important to have to be part of the EC?

Time management is really important. You have to be able to keep to a strict schedule or you’ll be a goner. Being a team player and balancing tasks and supporting each other is necessary… it can be stressful at times; keeping that family vibe is very important. IAPS is just like a big family. What else? Do I need to think of another one? Communicating and being able to express yourself – that’s a big one. If you lose communication, it causes a lot of problems; a lot of problems. Communication is critical. 

What is it like being part of the EC?

…what’s it really like? 50% of the time is spent dealing with bureaucracy and the other 50% is spent listening to the Treasurer’s obsession with fund-raising. 

What has been your biggest success this year?

Being elected as IAPS Data Protection Officer (DPO); nah I’m messing with you. For me, overcoming the biggest challenge of IAPS IT infrastructure. Basically we managed to migrate to a different hosting provider, containerized everything and we have backups on top of backups. Before that, if something crashed, you had to pray that it would start again.

What is the role of the DPO?

Basically, it involves looking through the GDPR legislation. Every organization has one to ensure that the organization follows the legislation. In addition to that, the DPO acts as a legal in house advisor, assisting in creating Data Processing Agreements.

What advice would you give to someone who was considering the role of IT Manager?

Go for it! Just be sure to know the basics of sysadmin, PHP and network security. Without those you are a goner.

How can people get involved with the IT Working Group?

It is very simple: hit me up on Discord or throw me an email at dimitris.gkavakos@iaps.info

What advice would you give to someone who was considering joining IAPS?

When I first joined IAPS, I joined as the President of an already made NC (Greece). I started my journey through physics associations from EPS Young Minds and the American Physical Society, then I landed on IAPS.

If you ask me, why should you join IAPS…

IAPS has one of the most heart warming communities in the student association world, not just in Physics. You have the opportunity to meet new people, learn new skills and support your activities on a local level.

Aside from the aforementioned, IAPS is also a great opportunity to learn how to run an NC or an LC, join a Working Group and transfer the knowledge back to your country. The knowledge that we have has been battle tested from the late 1990s.

Categories
Article of the Month IAPS 2022-2023 jIAPS

jIAPS July Article of the Month: How Low Can We Go? – A Brief History of Nano-Scale Printing

Zofia Dziekan, University of Warsaw, Poland

The ability to create physical objects using 3D printers has taken the manufacturing industry by storm and opened up new ways for innovation in a variety of fields (1). But as impressive as it is to print a functional bicycle or a complex medical implant, some researchers have been pushing the limits of this technology in a different direction: down to a nanoscale. With nanoscale printing, we can create structures that are smaller than the width of a human hair, with intricate details and unique properties. In this article, we will explore the history of nanoscale printing, the underlying physics of this process, and the exciting possibilities it offers for the future.

Obraz zawierający w pomieszczeniu, zieleń, dłoń

Opis wygenerowany automatycznie

Fig. 1 Size comparison between (A) regular (2) and (B) nano-scale 3D printed object (3).

The Physics of Light-Matter Interactions

In 1930, a young mathematician – Maria Göppert-Mayer attended a Max Born seminar at the University of Göttingen (4). Mesmerized by quantum mechanics, she dedicated herself to the pursuit of theoretical physics, eventually becoming one of four women awarded the Nobel prize in Physics. While today she is best known for her work in the Manhattan Project and her postulation of the nuclear shell model, it is her earlier work that is of interest to our story. Göppert-Mayer’s groundbreaking research into molecular excitation, explored in her doctoral dissertation, demonstrated that molecules can be excited by the simultaneous absorption of two photons with energies smaller than the difference between the excited and ground state (Fig. 2A). Despite the lack of high-intensity light sources to test her theory at the time, Göppert-Mayer’s work laid the foundation for future discoveries. Three decades later, the invention of the laser finally provided the tools necessary to observe two-photon excited fluorescence for the first time in CaF2 crystal doped with europium atoms (5).

Obraz zawierający diagram

Opis wygenerowany automatycznie
Obraz zawierający w pomieszczeniu, mikrofala, stal, urządzenia kuchenne

Opis wygenerowany automatycznie

Fig. 2 (A) Energy levels involved in one-photon and two-photon absorption (6). 

(B) One-photon and two-photon absorption of fluorescent die (7).

The Pulsed Lasers

The two-photon absorption process involves two photons instead of one, making the probability of absorption proportional to the intensity squared (5). As a result, increasing laser power has been crucial in the development of application for two-photon absorption. Pulsed lasers have been a game-changer in this regard, with their ability to release high-intensity bursts of energy that can be precisely controlled in terms of duration and frequency. Unlike their continuous-wave counterparts, pulsed lasers can vaporize materials without causing thermal damage, making them an indispensable tool for surgery and laser material removal (8). 

3D Printing Through Direct Laser Writing

In the late 1980s, researchers started investigating the potential of using pulsed laser technology to create nano-scale 3D printers (5). One promising technique that emerged in this process was direct laser writing (DLW), a form of 3D printing in which a focused laser beam scans over the sample in three dimensions until it solidifies the polymer solution into the desired shape. To fabricate structures below the diffraction limit, the intensity, duration and frequency of the laser pulses must be precisely controlled to achieve two-photon absorption that would initiate polymerization. The material is polymerized only in the focal spot of the beam where its intensity is the highest as stated previously, and the probability of the process grows with intensity squared (Fig. 2B). This small volume in the focal spot of the beam is known as a voxel and it serves as a building block of any 3D print in DLW (7). 

By moving the laser beam, it is possible to polymerize photosensitive material point-by-point, creating complex structures that are just several microns in size. Just imagine tree-lined avenues, dozens of miniature buildings and little polymer people comfortably sitting on a single strand of hair! It is truly incredible that there is no other method that allows printing on this scale. The resolution of the process is limited mainly by basic properties of an optical setup and material properties. Since its inception, nano-scale printing has come a long way and has found numerous applications in various fields, from micro-robots to drug delivery systems (9 – 10) (Fig. 3). While the technology still faces challenges, including a limited range of building materials and slow printing speed, continued research and development promise more exciting applications in the future. The history of nano-scale printing is a testament to human ingenuity and the power of scientific discovery – and who knows what incredible breakthroughs we’ll see in the years to come!

Obraz zawierający tekst

Opis wygenerowany automatycznie

Fig. 3  SEM images of objects fabricated using DLW. (A) Medical imagining system build by inserting into a needle an optical fiber with 3D printed lenses (9). (B) Light-fueled robot that can walk and jump, placed on a human hair for scale (10). (C) Microfluidic chip designed for the fabrication of drug carrier nanoparticles (11).

References

1. S. Mohr and O. Khan. “3D printing and its disruptive impacts on supply chains of the future.” Technology Innovation Management Review 5.11 (2015): 20

2. [Internet] Available from: 

www.3dbenchy.com/3dbenchy-a-small-giant-in-the-world-of-3d-printing. 

3. Doherty RP, Varkevisser T, Teunisse M, Hoecht J, Ketzetzi S, Ouhajji S, et al. Catalytically propelled 3D printed colloidal microswimmers. Soft Matter. 2020 Dec 14; 16(46):10463–9. 

4. Sachs R.G. Maria Goeppert Mayer – A biographical memoir. 1978. 

5. Liao C, Wuethrich A, Trau M. A material odyssey for 3D nano/microstructures: two photon polymerization based nanolithography in bioapplications. Vol. 19, Applied Materials Today. Elsevier Ltd; 2020. 

6. Lavocat J.C. Active Photonic Devices Based on Liquid Crystal Elastomers. Dec 2013.

7. [Internet] Available from: www.l3dw.com/an-introduction-to-direct-laser-writing-dlw.

8. Shirk MD, Molian PA. A review of ultrashort pulsed laser ablation of materials. 1998. 

9. Gissibl T, Thiele S, Herkommer A, Giessen H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat Photonics. 2016 Aug 1; 10(8):554–60. 

10.    Zeng H, Wasylczyk P, Parmeggiani C, Martella D, Burresi M, Wiersma DS. Light-Fueled Microscopic Walkers. Advanced Materials. 2015 Jul 1;27(26):3883–7. 

11. Erfle P, Riewe J, Bunjes H, Dietzel A. Goodbye fouling: a unique coaxial lamination mixer (CLM) enabled by two-photon polymerization for the stable production of monodisperse drug carrier nanoparticles. Lab Chip. 2021 Jun 7; 21(11):2178–93. 

Categories
IAPS 2022-2023 Interviews jIAPS

An Interview with Gabriel Maynard, IAPS Vice President and Recruitment Officer

The Editor-in-Chief is continuing to make their way around the EC. Read the latest interview below:

What are you currently studying?

Well, today I am not studying – I’m in the transition period between the Bachelor’s and Master’s degree programs. In the autumn, I’ll start an Erasmus Mundus Master’s in Planetary Geophysics. I would like to emphasize my career towards Environmental Physics, as that was the focus of my four year undergraduate degree course at the University of Costa Rica . It’s nice to have a break – I was overwhelmed with choice at the end of my degree. Plus, I have time for other projects, including IAPS and NC Costa Rica. 

Which committee was it the most rewarding to recruit?

It’s the most rewarding to me working in the NC here in Costa Rica. Recruiting other committees in Central America and working with them to create a community, with the potential to grow is also very rewarding.  

Have you been involved with the recruitment of anyone who has gone on to do anything significant in IAPS?

Well… I helped to recruit most of the current EC! There’s NC Greece. I did the process of upgrade from LCs to the current NC, and Dimitris [current IT Manager] is part of that NC; then LC Singapore – Soe [External Relations Officer]; and LC Santo Domingo – Thara [Secretary, also see jIAPS’ interview with Thara]; and NC Guatemala – Marisol [PR Manager]. Have I missed anyone? [And that’s just the people on this year’s EC! – Editor]  

Which committee is the most difficult to recruit?

There’s one which we’ve devised a solution for, but they are stubborn. They want a national committee, but that would be a political statement… and then there’s the case no one talks about which is extremely difficult or impossible to recruit.

Which other tasks, apart from recruitment, have you been involved in?

I was the Data Protection Officer for half a term. It was only for a short time and it wasn’t much work. I’m also on the AC5 Council, organising meetings and trying to move further with the collaboration with IUPAP. As you know, I am Vice-President which has its set of tasks, including helping with the planning of the Mulhouse meeting and connecting with external relations. I’m helping with trying to organise another IAPS2CERN trip which is providing a challenge. There’s a financial problem with the organisation of that – it’s not one of IAPS’ major events, so it is more difficult to find sponsors who are willing to subsidise the laboratory visit [If you, dear reader, happen to be a millionaire, or know of any potential sponsors, please do get in contact with us –  Editor].

Which IAPS event have you enjoyed the most?

I really enjoyed PLANCKS 2022 in Munich. It was really special to see people from the committees you have recruited participating in the competition and enjoying the event. It was very rewarding, especially seeing countries from outside Europe becoming more involved in IAPS. 

PLANCKS 2022 was also the first time Costa Rica participated in person. They selected a team and entered the competition… and it’s fantastic to see it keep improving. Costa Rica participated this year too.

There were also so many activities at PLANCKS and I saw plenty of friends. 

How do you convince new members to join IAPS?

Depending on the area, I say different things. If they are in Latin America, I tell them about the events we are hosting. Then there’s the grants you can apply to in IAPS. I also promote that it is beneficial to have a greater representation from their continent in IAPS, and how they can use it as a platform for future collaborations and to improve their countries. For everyone, I mention the main events IAPS organises, and then the regional engagement and planning of events too. 

What are some of the skills you have learnt from being part of IAPS?

One of the benefits of IAPS has been learning management skills. I’ve learnt how to propose projects and have gained hands-on experience. Being part of the IAPS EC has changed my worldview completely. I have gained new tools and learnt so much.

On average, how many emails do you send a week relating to IAPS?

It varies a lot… maybe about ten a week. Some weeks it is only about three or five. Probably at least ten a week. This isn’t including messaging – that would go off the chart! [The Editor has just checked their email headcount and it is also at least ten IAPS emails a week]

I heard you recently completed some field work as part of your course. What was it like?

I completely like field work. You never know what is going to happen, whereas, in a lab, you have a very controlled environment. You also get to take nice pictures. 

It was a comprehensive experience. Sometimes we had to wake up at 3am and get on the University transport to go to a far-off place in the country. We had to take our measuring equipment with us which weighed about 20 kg and plant the stations we were setting up. This was done to measure carbon dioxide and methane fluxes from the soil to study the interaction between soil and boundary layer in different environments. The stations were to measure Greenhouse Gases in real time. Usually it was very hot – about 30 °C – and about 97% relative humidity so we were all sweating so much. 

[Here, we lapsed into a tangential discussion about snakes. The conclusion is that if you like snakes, go to Costa Rica. If you don’t, come to PLANCKS next year in Dublin.]

One funny story about the field work… we were setting up a station when we could hear a buzzing noise. We were in a field, with trees around it. The buzzing noise was getting stronger and stronger. “Let’s not panic,” said the professor, “Those are killer bees.”

“We’re going to finish setting up,” he continued, “and then run.”

He then encouraged us to start working faster. The buzzing noise was all around us, coming from all directions – we didn’t know where to run to, but we finished the task and got out of there. 

Can you think of anything unusual you’ve had to deal with in your role?

Well, there’s one thing that was very surreal and bothered me.

One Individual Member who was trying to sign up to join IAPS was very intense, following the procedure. There was lots of emailing and it was quite problematic. Then I received a WhatsApp call at 2am. I woke up in the middle of the night and thought ‘who’s calling? Who is this who has got my number?’ It kept calling, about seven times.

All they needed to do was to pay the ten euro membership fee, by either bank transfer or PayPal. This started a whole month of missed calls. They wanted guiding through each small step to pay by PayPal… at that point, I lost patience. ‘I don’t care! Leave me alone!’ I thought… so I gave up and paid the fee for them. ‘Just go away.’ [Note – don’t expect Gabriel to pay your membership fee for you. You have to annoy him sufficiently to get that result, and next time, he is likely to resort to a different tactic instead.]

The lesson here is to never give your phone number in a situation to do with IAPS. 

What is your favourite thing about your role?

I really enjoy engaging with more physics students and hearing the reality through their perceptions of IAPS. I like knowing the different perspectives and connecting with students. 

Thank you so much Gabriel! 

[Gabriel then left the video call to have a well-deserved lunch break, whilst it was the end of the day for the Editor-in-Chief, who returned home and typed up this interview.]

Categories
IAPS 2022-2023 jIAPS

jIAPS June Article of the Month Part Two: Which of these Trucks are Driving?

Author: Ali Mohammed Redha, King Abdullah University of Science and Technology, Saudi Arabia

Overthinking a Simple Question

Figure 1: Showing a famous post popularized by World of Engineering social media accounts asking: “which of these trucks are driving?” [1]

1 Motivation

You have probably come across this post (Figure 1) somewhere on social media. It is a famous “trick question” that is meant to stir up discussions, of which there are many. I came by this post numerous times, often going to read the comments, be amused by how many incorrect answers to the question, and then moving on. Being a physicist, I knew the answer and it was as clear as it can be. Having such a question answered incorrectly most of the time was not a big deal, as the question is meant for fun. 

Recently, I came across the post again on Instagram, this time as part of a Ramadan daily quiz made by an academy that I am part of. I waited anticipatingly for the results to be announced. The answer was announced, and it was “C”. “Hmm…Surely they are not serious”, I thought. An attempt by multiple participants was made to clarify the correct answer, but the organizers insisted on the answer. In the end, the clarification attempts failed, and the answer remained “C”.

Although it has been a while now since that incident, I still have it roaming around my head. “The question is simple. How could they have gotten it so obviously wrong?” Thus, I decided to dig deeper into the problem, hoping to find an answer.

2 What Exactly Does the Question Want?

When a physicist thinks about a problem, they immediately start thinking about the exact meaning behind the question. Here, we want to know which of these trucks are moving in the indicated direction. 

Based on your background, this is either “very easy” or “impossible”. The obvious answer is “A” is moving backward, “B” is stationary, and “C” is moving forwards. Problem solved right? Not quite. There are more details underneath this problem than what is immediately thought. Let us take into consideration all the different cases instead of talking about the problem abstractly. Consider this thought experiment.

Imagine you are in a car and the car is stationary. Suddenly, the car starts accelerating fast reaching 100 km/h in 5 seconds, what will happen to you? You will feel a strong pushback due to inertia, almost clinging you to your seat. This is similar to the case “C” in the question. Imagine afterward the car stays moving steadily at 100 km/h for a while. Then, all of a sudden, the brakes are hit, and the car decelerates to 20 km/h in 5 seconds, what will happen to you? You will feel a push also caused by your inertia, but this time it will push you forward. Think about it, the car was still moving forward, yet you felt a push forward. This is like case “A”. We have shown that both cases “A” and “C” are possible to be moving in the forward direction. 

Even case “B” is possible to be moving forward. Imagine if the car brakes are not hit, and the car keeps moving at 100 km/h for a long time. What will happen? You will stay still as if you are not even moving. As you can see, all of the cases are possible to be moving in the direction stated in the problem. Except there is more to it than just this.

Consider now that everything is reversed. The stationary car, with you in it, starts moving backward reaching 100 km/h in reverse. What will happen to you now? You will feel a push forward (opposite the direction of motion). If the car then stays moving at that speed for a while, you will feel as if you are stationary. And again, when the car decelerates from 100 km/h to 20 km/h, you will feel a push backward (with the direction of motion). This means that all the cases are possible to be moving in the opposite direction as well!

It can get even more counterintuitive, as one can make an argument that they all can be stationary, and it would be true in certain circumstances. For a physicist, this should not be surprising, as physics tells us everything we need to know about these answers.

3 The Physics Behind It

In physics, motion means the change of position in the direction specified and that has a name. We call it velocity. So, to answer the question, we need to know the direction of the velocity of each truck. However, the three images given do not give any indication whatsoever about the direction of the velocity. Instead, it gives us the direction of the force applied to the liquid, or in other words, the direction of the acceleration.

According to Newton’s first law, a stationary object would stay stationary, and a moving object would stay moving at constant speed unless a net force acts upon it [3]. This in a way, is the case “B”. A moving object with constant speed cannot distinguish (physically) whether it is moving or not. This is known as the principle of relativity (first made famous by Galileo Galilei) [2]. This means that we cannot physically sense speed (by touch at least). Newton’s second law gives us what an applied force does, and that causes acceleration [3]. Acceleration is the change of motion (velocity). A change backward would give us the answer “A” and a change forward would give us the answer “C”, due to the famous phenomena of inertia. See, this does not tell us in any way what is the direction of velocity. The directions of the velocity and acceleration are independent of each other. So, in each of the three cases, the object can be moving in any direction. As a matter of fact, it can even be moving sideways, vertically, or even at an angle! 

If you go back to the post, the answers with the most likes are those saying all choices are possible [1]. In fact, some say that the wording of the question supports this answer (“are” not “is”). However, some other comments come up with a good counterpoint. The question says “driving” and generally, driving is done by hitting the gas pedal, not the brakes! Therefore, the answer is “C”. Maybe this is what the organizers meant in that answer? To that I say, yes you got a point. But I would still argue that the answer is not just “C”, not just from the previous argument (as the car still can decelerate even with pushing the gas pedal), but also for another entirely different one. Let me show you why.

4 Overthinking the Question

For those observant, there is a slight flaw in our theoretical experiment. We used a solid object – you dear reader – as a replacement for the liquid in the problem. And this is a technical issue in the experiment, as liquids behave differently than solids. 

Liquids, unlike solids, do not have a fixed shape. And so, a force acting on a liquid would produce vastly different results than a force acting on a solid. A rigid solid object would remain intact upon a simple touch, and a liquid, like water would start vibrating, with waves rippling on its surface. That is just a simple touch of the hand. A strong force would cause a larger vibration on the water’s surface and would cause its shape to deform significantly. 

Now apply this to the case we have. The truck is stationary with all the liquid on it, then it starts accelerating strongly forward abruptly. The liquid will be pushed backward at first, but upon hitting the back of the container will start waving back and forth. What we will get is chaos, in the logical and physical sense. The motion of liquids in such cases is chaotic, similar to tossing a coin or using random.org [4]. Hence, case “C” would not be replicated precisely during a forward acceleration of the truck. If you take 1000 images of the truck accelerating forward, maybe you will be able to replicate image “C”, except do not hedge your chances of having it stay constantly the same. Fun fact, you might be able to get images of “B” or even “A” if you were lucky enough! Things need to go a specific way, but it is possible! Thus, you might be able to get images “A”, “B” and “C” in the same “photo shoot”. Even with the notion that hitting the brakes is not driving, we still got all the images which means all of the answers are possible. Let us take one more thought experiment to explore another possibility. 

5 Overthinking It to Absurdity 

Imagine the truck with the fluid inside it, and we take that truck and shake it violently. After that, we let it rest in a pure isolating chamber, where it cannot interact with anything at all. During this time, we took our special x-ray camera and took a large number of photos (theoretically an infinitely large number of them). If we then filter out these photos, we will see the three cases among them. The point is that the force applied on the truck does not have to be by the truck (engine) itself. It can be caused by other means. 

The complexity of the problem does not stop there. I mentioned previously that the reaction of liquids to forces is chaotic, meaning it depends on many factors. These factors include, but are not limited to: the type of liquid (determining its density, viscosity, etc.), the volume and temperature of the liquid, the material the container is made of, the type of gas (if any) with the liquid inside the container and its temperature, ambient air temperature, wind currents, amount of sun radiation incident, the surface of the road and the tiers, vibrations caused by the car engine and motors, and the remaining is left for the reader to figure out as an exercise [5]. This adds layers upon layers to the already, too complicated simple problem . 

6 Conclusion

The final answer to this question is: all and none of the above (this is a first!). This problem highlights one trick of mother nature. How our senses fool us and build our intuition on a physically incorrect notion. This is why we have to be careful when dealing with physics, as more often than not, physics can be counterintuitive (which in and of itself is counterintuitive). Ultimately, the answer to this question does not matter. It is for fun. What matters is how people perceive this problem. Everyone is going to understand it in their unique way, which opens the floor for some great discussions. It is astonishing to come across a question occasionally where there can be no winner or loser. Just different perspectives on a fascinating, tricky problem. In such a scenario, the true winner is everyone who got enlightened by a nice, eye-opening discussion. Not everything has to be a competition after all… and yes, I did write this to prove a point.

7 References

[1] World of Engineering. Which of these trucks are driving?: https://twitter.com/engineers_feed/status/1592207414367252480 2022 Nov 14 [cited 2023 April 27] [Tweet]. Available from: @engineers_feed. 

[2] Wikipedia contributors. Principle of relativity [Internet]. Wikipedia, The Free Encyclopedia; 2023 Mar 27, 20:46 UTC [cited 2023 Apr 27]. Available from: https://en.wikipedia.org/wiki/Principle_of_relativity.  

[3] Glenn Research Center. Newton’s Laws of Motion [Internet]. Glenn Research Center – NASA. [Cited 2023 May 21]. Available from: https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/newtons-laws-of-motion/ 

[4] Bishop R. Chaos. The Stanford Encyclopedia of Philosophy; 2017 Mar 21 [cited 2023 May 21]. Available from: https://plato.stanford.edu/entries/chaos/ 

[5] Wikipedia contributors. Fluid dynamics [Internet]. Wikipedia, The Free Encyclopedia; 2023 May 4, 18:13 UTC [cited 2023 May 21]. Available from: https://en.wikipedia.org/wiki/Principle_of_relativity.  

Categories
IAPS 2022-2023 Interviews jIAPS

An Interview with Thara Caba, IAPS Secretary

For the next in the series of jIAPS interviews. The Editor-in-Chief spoke to Thara Caba, IAPS Secretary:

What are you currently studying?

I graduated from my Bachelor’s course in April. I was studying General Physics for my undergrad in Dominican Republic. I’ll start my Master’s in September, where I’ll be studying Astrophysics and Space Science; so I’m actually in between degree programmes at the moment. I’m doing some extracurricular courses in General Relativity and Cosmology, and some programming courses. 

What have you enjoyed most in IAPS?

I really enjoy the community in IAPS. Here [in the Dominican Republic], we only have a small community of physics students. In IAPS, you get to meet people from all over the world. I enjoy attending events and getting to meet so many physics students. It’s not ordinary for me; so I like the events and the community. 

What’s your IAPS journey been like – what previous roles have you had?

A few years ago, I was the President of my student association and I was contacted by Gabriel [now Vice-President of IAPS], who was part of the recruitment working group of IAPS. Gabriel found the email addresses of all the student physics societies in Latin America and contacted them to tell them about IAPS. I got a message from him and that’s how we started the process to become a LC [Local Committee of IAPS]. That was in 2021 I think. After that, I was a volunteer at the online edition of PLANCKS in 2021. I became more involved with IAPS. I was a staff member of jIAPS 2021 [and Thara is still helping with jIAPS now – Editor]. Then I ran for PR Manager in 2021 and became part of the EC. 

And so, why did you decide to apply to become IAPS Secretary?

As part of the EC [Executive Committee], I saw the importance of having a good secretary. Then I was like, hey, I’m good with time management and organising stuff, why shouldn’t I apply for Secretary of IAPS? I was also finishing my studies, so I knew I’d have more time for IAPS. So that’s what I did in 2022, and here I am now. 

What does your role involve, other than minute taking at meetings?

Taking minutes every two weeks for the EC meeting is the most consistent thing I have to do, but it actually isn’t the biggest thing. I also make sure that everyone’s doing their tasks that they were allocated in the meetings and remind them to do their tasks. 

Organising the EGM (Extraordinary General Meeting) and now the AGM (Annual General Meeting) is a lot of work. There are a lot of moving parts and this is the biggest thing I have to do. Whenever there’s a letter of recommendation or a letter for an event to be written, that’s my job. Those are the biggest things I have to do in my role. There are also unallocated jobs in the EC that anyone can do too. 

What’s your most memorable moment from IAPS?

My most memorable moments are from PLANCKS Milan 2023. I really liked meeting and talking with the Nobel Prize Winner, Didier Queloz, who discovered the first giant planet outside the solar system. [You can ask Thara for her other memorable moments – Editor

What are IAPS meetings really like?

They are usually very long and very heavy – there is a lot to discuss. Before doing it, no one is aware how much work being on the EC really is. There are lots of things to do, but it’s really rewarding. 

What’s your top tip for taking minutes?

Don’t write everything anyone says, or you’ll fall behind and start to miss stuff. Just write the general idea and that’s okay. People don’t want to have to read a ten page long document for every meeting. 

Can you think of anything unusual or particularly interesting that you’ve had to include in the minutes of a meeting?

I’ve included lots of unusual things in the minutes! I want people to read them. I don’t want them just to approve the minutes without reading them. Once, I wrote that one of the EC members was in the bathroom in the minutes to see if people were paying attention to what I wrote. 

Have you had to do a lot of travelling in IAPS?

Yes! It is one of the most rewarding things about being on the EC, or just being in IAPS in general. I have two favourite events that I travelled to with IAPS. The first is the Opening Ceremony of the IYBSSD (the International Year of Basic Sciences for Sustainable Development), which was really fancy and held in Paris. I got to meet ministers and Nobel Prize winners… and afterwards, we went to the Eiffel Tower. It was an amazing day.

The second event is the IUPAP (International Union of Pure and Applied Physics) Centenary Symposium in Trieste, which was near the beach. We got to go to the beach almost every day. It was an event with physicists from all around the world. I got to learn about the diverse jobs a physicist can do – not just becoming a researcher, but there were also journalists, business managers and policy makers.   [You can read more about both of these events in jIAPS 2022 – Editor]

What advice would you give to someone who was thinking of joining IAPS?

Just do it! It is really fun! You get to meet lots of people, make lots of friends! 

I’ve found that physics students all like the same things; we have similar personalities. If you join, you won’t regret it. 

Thank you Thara; is there anything you’d like to add?

Hmm…  just ‘thank you for interviewing me!’ 

Categories
IAPS 2022-2023 Interviews jIAPS

An Interview with the Coordinator of the Music Group Sessions, Aleksandar Stojcheski

Interviewer: Fabiola Cañete Leyva, Benemérita Universidad Autónoma de Puebla, Mexico

Music and physics have always been intertwined. That is the main motivation behind the Music Sessions led by Aleksandar Stojcheski at IAPS.

For the next in a series of jIAPS interviews, we feature a conversation with Aleksandar where we discuss the objectives of this initiative.

You can listen to the New Year’s song or the 35th Anniversary’s song produced by the Music Group at IAPS!

Graphic designed by Harvey Sapigao

Hello, Aleksandar. Can you share with us what you are studying and where?
Hello. I’m currently studying for my undergraduate degree. I’m in my third year and my major is physics. I study at the Faculty of Natural Sciences and Mathematics in Skopje, North Macedonia. My intentions for future studies are in the field of fusion and nuclear energy. 

How did this initiative begin?

Well, music has always been there. It’s not just something that I started to do recently. Listening to music has always been a huge part of my life. 

I started playing the guitar because my father used to play and he taught me. That’s how I started with the acoustic guitar. Then, you know, with time, after practicing more I decided to get myself an electric guitar. Although, my first wish was to play the drums, you know? And that wish remained. So much that several months ago I finally got my drum set. I have always loved music and instruments are a big part of my life. I have plans for future instruments. I would like to play a little bit of everything. It is a passion I always carry with me, even when I go to physics events. 

Actually, that is how all this initiative began. It was very interesting how it happened.

Last year I went as a delegate to the EPS forum in Paris. It was my first participation as an IAPS member and it was great. I met incredible people: the president, the business committee, everyone. We had a great time and I learned a lot. 

At the end of the event, many of us remained in Paris for one or two days more to enjoy the city. Some of us gathered to walk around and we ended up visiting Montmartre, a place full of culture. There were some theaters, very nice cafes and of course, music.

I remember there was a street musician who played the guitar and he really interacted with the audience. All of us ended up singing together and, at one point I even joined the stage. It was really an amazing experience.

Afterwards, while talking with Ruhi —the IAPS president at that time— I said, why not try to do something like this in IAPS? She was very excited about the idea. And after returning to my country we really talked about it. I gave some proposals, she also gave some ideas and that is how it all happened. It was very spontaneous.

What is the main objective of the Music Group at IAPS?

Well, music always brings people together. So the idea is to recreate, in some way, the experience we all had in Paris. The music sessions give space for people to express themselves, to share some music and also part of their culture. I was really honored when people entered the first couple of sessions and started to play their instruments. 

Slowly, some ideas came up. During sessions I started to think about what more we could do and that is how the idea of making a song for the 35th anniversary of IAPS was born. We thought that it was a great opportunity to come together and produce something. 

The coolest part of being an international community is that you don’t just gather in a room and play. Being all in different parts of the world, we had to, sort of, make it like a puzzle. Everyone played individually and in production all the pieces came together. The collaboration was amazing.

How many participants are there in the Music Group?

On average, about 10 people. There is always a different number of people in each session, it depends on their availability. I usually try to post the date early so that everyone can see it. Anyone can join. We actually had new members the last time.

Being a group formed by physics students, do you think that your approach to music is different from that of the general public?

Maybe. I would say that as a physicist you get inspired in a different way because physics is a science that consists of amazing theories that can influence the way you think about music. For example, there have been people who play the Fibonacci sequence and get inspired by incorporating those mathematical and physical concepts into their music.

Which music genre is addressed by the Music Group?

We don’t approach just one style. There have been sessions where we play traditional songs. Sometimes we play jazzy stuff, like the New Year song we composed. And other times we also go with a classical perspective, like with the anniversary song.

Personally, I love rock music and sometimes I also listen to classical music but I try not to impose my preferences in the music sessions. I am always open to suggestions and I am happy to try new things.

Do you have a role model or an inspiration, like a physics professor with a music background?

Not really, that is not my way of thinking. I don’t have role models. I follow inspiration instead. Music is a great part of my life and I have understood that I need that balance between art and science. When I do music I get inspired by the process. 

Finally, what advice would you give to anyone who is thinking of joining the music group or learning to play music?

Well, the main requirement, in a way, is to have a passion for music. The objective is to have fun, to relax a little bit and if something comes out of it, that is fantastic. If someone has a music project that requires collaboration or if someone just wants to learn about other cultures through music, this is the place to do that.

Aleksandar, thank you so much for this interview and for the wonderful work done leading the Music Group at IAPS.’

Find out more about the Music Group Sessions in the #music channel of the IAPS Discord.

Categories
Article of the Month IAPS 2022-2023 jIAPS

jIAPS June Article of the Month: Can We Feel Speed?

Ali Mohammed Redha and Asif Bin Ayub, University of Bahrain, Bahrain

1 Introduction: The Question

One day, as I was driving my car back to my house after a long day at the university. A question popped up in my mind that caught my attention for the whole drive: “Can we feel speed?” Being a physicist, I am used to thinking of questions like this for hours straight. But this, this was different. I began thinking of the topic from multiple perspectives. How would a physicist answer this question? How would a non-physicist answer this question?

Figure 1: Shows a search result of the word “speed” on Pixabay. Can you feel speed from that? Source: Pixabay

The question was so intriguing to me that I decided to resort to the most scientific method of questionnaires, Instagram polls. I asked in the poll, “Can we feel speed?” and 59% of the respondents said YES, the other 41% of course answered NO. What was most interesting about the poll is that physicists following me took both sides. Some said YES while the remaining said NO. I thought the answer would be obvious to physicists, NO is definitely the answer, right? That made me think deeper about the question, particularly about the word feel.   

Figure 2: The scientific poll conducted. The question is: “Do we feel speed?” 27 participated with 16 answering YES and the remaining 11 answered NO. The participators are all from Bahrain with various backgrounds and specialties. Source: Self-made.

2 What Do We Mean by “Feel”?

To feel is to experience something emotionally or physically [1]. We can feel emotions: happiness and joy, love and passion, sadness and sorrow – which are abstract constructs of our mind. But the type of “feel”-ing we are interested in is rooted in physical experience: such as touch, heat, and texture. In this physical notion of “feel”, which we might call “sensing”, can we truly sense speed?

We sense our physical surroundings using our five senses: vision, hearing, taste, touch, and smell. Think about them as detectors. Thus, to see if humans can sense speed, we need to see if these senses can detect motion. Imagine yourself driving a car and applying each of your senses separately. Which ones can detect speed?

Figure 3: Shows the senses of a normal human. Us physicists, we do have 6th, 7th, 8th, and 9th senses but we don’t talk about those… Source: Self-made

Identifying speed with vision is no problem. And although speed does not have any sound in and of itself, minuscule collisions, friction, engine sound and other interactions generate sound and can be heard. Combine both visions and hearing together and you get a good motion detection apparatus.

However, take vision and hearing away, and we lose almost all notion of speed. As far as we know, speed cannot be identified by smell or taste – though, it would be interesting to see how an avant-garde chef might imagine the flavor of speed. As for touch, it counterintuitively, cannot sense speed. This is one way that nature tricks us into thinking we are sensing something when we are sensing something else entirely. Our inability to sense speed does not stem from a flaw in the human sensory apparatus, rather, it is a consequence of a fundamental principle of nature. 

3 Finally, Some Physics 

There is no physical way to distinguish between a moving object at a constant speed and a stationary object. This is known as the (special) principle of relativity and was first theorized by Galileo Galilei in his theory of relativity [2]. Formally, an object/observer that is moving at a constant speed or is stationary is known as an inertial frame of reference. Therefore, according to the (special) principle of relativity, there is no fundamentally preferred inertial frame of reference [2].

To put this simply, this means that everyone has the right to claim themselves to be stationary. Me, I see myself as always stationary so I can claim to be always stationary, “I am the center of the universe”. You, dear reader, always see yourself as stationary and so you have the right to claim that you are always stationary and that you are the center of the universe. No one is wrong here; we are both correct. Someone else might also jump in and claim they are stationary, and we are not, and they will still be right. All of these are physically identical, just seen from different perspectives.

This explains why we cannot sense speed physically by touch. After all, I am always stationary according to myself. There is nothing changing about me, whether I was sitting down, having a walk or driving a car. Everything else around me is moving, but me? No, I am always stationary (keyword: according to me). 

What humans physically sense are forces, we feel forces (more accurately, energy transmission). If you hit a wall, then you get hurt by it, because of the force the wall enacts on you. When driving a car, the car vibrates due to friction and minuscule collisions which act as forces on our bodies. Add to that the force exerted by the seat belt and through this nature tricks us into thinking we sense speed when we in fact sense forces. A more in-depth dive regarding our sense of touch is found in [3]. 

It is important to note that Galileo’s relativity does not give the full picture, and one should resort to Einstein’s relativity for a more accurate representation of reality. Einstein’s relativity agrees with Galileo’s principle of relativity in the case of inertial frames. However, when forces are involved the frames of reference become non-inertial. In that case, there would be preferred frames of reference and that has many implications [4]. Still, how does that answer our question? 

4 Conclusion: The Answer

This question goes beyond just science, just answering the question with physics does not feel right. The answer to it is heavily dependent on how we, humans, function. It is always awe-inspiring how complex the human system is. Not just biologically, but socially and psychologically as well. I mentioned how scientifically, we always think of ourselves as being stationary and everything around us to be moving. In the theory of relativity, you are the center of the universe. Go ahead and apply this way of thinking to the social norm and things would be confusing and overly complicated. We sacrifice accuracy for easiness. We pick perceptions and logical systems that would lead us to the simplest, most straightforward path. Everyone is ready to throw away their title of “center of the universe” to live harmonically and in symphony. Ultimately, it does not matter if we believe that we can feel speed or not. What matters is that we can communicate our situation in a way that others would feel. So, is the answer YES, or NO? Well… whatever makes you feel better.

5 Acknowledgement

Many thanks to my friend and colleague Asif Bin Ayub for his help in writing this article. He had a large input and helped me in it throughout. 

6 References 

[1] Cambridge University Press. Meaning of feel in English [Internet]. Cambridge Dictionary; cited 2023 Apr 27. Available from: https://dictionary.cambridge.org/dictionary/english/feel

[2] Wikipedia contributors. Principle of relativity [Internet]. Wikipedia, The Free Encyclopedia; 2023 Mar 27, 20:46 UTC [cited 2023 Apr 27]. Available from: https://en.wikipedia.org/wiki/Principle_of_relativity.  

[3] Fulkerson M. Touch, Edward. The Stanford Encyclopedia of Philosophy; 2020 June 21 [cited 2023 May 21]. Available from: https://plato.stanford.edu/archives/sum2020/entries/touch/.[4] Wikipedia contributors. Preferred frames [Internet]. Wikipedia, The Free Encyclopedia; 2022 Feb 16, 21:04 UTC [cited 2023 May 21].  Available from: https://en.wikipedia.org/wiki/Preferred_frame.